Efficient Pattern Recalling using Parallel Alpha-Beta
Associative Memories

Mario Aldape-Pérez, Cornelio Yafiez-Marquez, and Oscar Camacho-Nieto

Center for Computing Research, CIC
National Polytechnic Institute, IPN
Mexico City, Mexico
Contact: marioealdape.org.mx, cyanez@cic.ipn.mx
oscarc@ecic.ipn.mx
http://www.aldape.org.mx

(Paper teceived on February 29, 2008, accepted on April 15, 2008)

Abstract. Associative memories have a number of properties, including a rapid,
compute efficient best-match and intrinsic noise tolerance that make them ideal
for many applications [1-4]. However, a significant bottleneck to the use of asso-
ciative memories in real-time systems is the amount of data that requires process-
ing. The aim of this paper is to present the work that produced a dedicated hard-
ware design, implemented on a field programmable gate array (FPGA) that
applies the Alpha-Beta Associative Memories model for pattern recognition
tasks. Along the experimental phase, performance of the proposed associative
memory architecture is measured by learning large sequences of symbols and re-
calling them successfully.

1 Imtroduction

An associative memory M is a system that relates input patterns and output patterns
as follows: x - M — y with x and y , respectively, the input and output pattern vectors.

Each input vector forms an association with its corresponding output vector. For each
k integer and positive, the corresponding association will be denoted as: (x*,¥"). An
Associative memory M is represented by a matrix whose i/ -th component is 5]
Memory M is generated from an a priori finite set of known associations, called the
fundamental set of associations. If 4 is an index, the fundamental set is represented as:
{(*, ") s =1,2,..., p } with p as the cardinality of the set. The pattems that form the
fundamental set are called fundamental patterns. If it holds that
x* = y* V,ue{l,?.,..., p} M is auto-associative, otherwise it is heteroassociative; in
this case, it is possible to establish that3u € {1,2,..., p} for whichx” # y*. If we con-

sider the fundamental set of pattemms {(x*,y*)| ¢ =1,2,...,p } wheren andmare the
dimensions of the input pattems and output patterns, respectively, it is said
thatx* € 4", 4=1{0,1} and y* € 4”. Then the j -th component of an input pattern
isx¥ € 4. Analogously, the j-th component of an output pattern is represented
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as yi € 4. A distorted version of a pattern x* to be recuperated will be denoted as ¥* .

If when feeding an unknown input pattern x® with w e {1, 2k, p} to an associa-

tive memory M , it happéns that the output corresponds exactly to the associated pat-
tern ¥, it is said that recuperation is correct.

Z  Alpha-Beta Associative Memories

Alpha-Beta Associative Memories mathematical foundations are based on two bi-
nary operators: « and £ . Alpha operator is used during the learning phase while Beta

operator is used during the recalling phase. The mathematical properties within these
operators, allow the o associative memories to exhibit similar characteristics to the

binary version of the morphological associative memories, in the sense of: learning ca-
pacity, type and amount of noise against which the memory is robust, and the sufficient
conditions for perfect recall [6]. First, we define set 4 ={0,1} and set B = {00,01,10}

so « and 4 operators can be defined as in Table 1.

Table 1. Alpha and Beta operators.

a:4dx A—>B p:BxA—4
X oy afx,y) X y Blx,y)
0 0 01 00 0 0
0 1 00 00 1 0
1 0 10 01 0 0
1 1 01 01 1 1
10 0 1
10 1 1

These two binary operators along with maximum (V) and minimum ( A ) operators
establish the mathematical tools around the Alpha-Beta model. According to the type
of operator that is used during the learning phase, two kinds of Alpha-Beta Associative
Memories are obtained. If maximum operator (V) is used, Alpha-Beta Associative
Memory of type MAX will be obtained, denoted as M ; analogously, if minimum op-
erator (A) is used, Alpha-Beta Associative Memory of type min will be obtained, de-
noted as W [7].

In order to understand how the learning and recalling phases are carried out, some
matrix operations definitions are required.

e o max Operation: PV, O =[ f;‘ T wheref;’ =v, o P;—m%)
e ¢ min Operation: P, A, Q0 = [f;’ 1oms Where fu" = N APy s i)
o /3 max Operation: £, V0. =[ ﬂ,—ﬁ Jon» Where ff = Vi APy, qy)
e/ min Operation: P,_ A 5Qm =] ff 3> Where }f,ﬁ = A Dy s g,\j)
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Whenever a column vector of dimension m is operated with a row vector of dimen-
sionz , both operations V_ and A, , are represented by @ ; consequently, the following
expression is valid:

YV X' =y®x =yA X 69
If we consider the fundamental set of patterns {(x*,y”)|u=12,..., p }then theij -
th entry of the matrix y* @ (x" )I is expressed as follows:

[y“ ®(x* )l =a(yf,xt) @)

2.1 Learning Phase

Find the adequate operators and a way to generate a matrix Ml that will store
the p associations of the fundamental set {(x',y"),(x*,3*).(x*,5*),-..(x",¥")},

where x* € A"and y* e A" Vue{l,2,..,p} .
Step 1. For each fundamental pattern association {(x*,y*)|x#=12,..., p }, gener-
ate p matrices according to the followma rule:

o), . ©

Step 2. In order to obtainr an Alpha-Beta Associative Memory of type MAX, apply
the bmary MAX operator (v ) according to the following rule:

weree] “

Consequently, the ij -th entry of an Alpha-Beta Associative Memory of type MAX is
given by the following expression: :

v, —v£=, —a(yf’,xj.‘) 3

Step 3. In order to obtain an Alpha-Beta Associative Memory of type min, apply the
binary min operator ( A ) according to the following rule:

’
W= /\f{_il: f‘@(x”)} 6
Analogously, theij -t entry of an Alpha-Beta Associative Memory of type min is
given by the following expression:

Vy = AL = a( ) ™

-




150  Mario Aldape Perez et al.

2.2 Recalling Phase

Find the adequate operators and sufficient conditions to obtain the fundamental out-
put pattern y* ., when either the memory M or the memory W is operated with the fun-
damental input pattern x* .
Step 1. An unknown input pattern x” with @ € {1,2,..., p} is presented to the Alpha-
Beta Associative Memory.
Step 2. In order to obtain an unknown output pattern y* withw € {1,2,..., p}, an Al-

pha-Beta Associative Memory of type MAX will be used according to the following
rule:

MA,x® = A1 Bty = Ao {Ivi a(l xi] x| ®)

Step 3. In order to obtain an unknown output pattern y“ with {w=1,2,..,p }, an

Alpha-Beta Associative Memory of type min will be used according to the following
rule:

WY ,x® =" By, %) =V I, el x)]x0 ) ()

Without dependence on the Alpha-Beta Associative Memory type used throughout
the recalling phase, a column vector of dimension m will be obtained.

3 Numerical Results

Let p=5,n=4, m=4. Given the fundamental patterns {(x*,y*}| uz=1,2,...,p }, ob-
tain an Alpha-Beta Associative Memory. The fundamental associations will be denoted
as: {(x',y"),(x*,3),...(x", »*) }.

1 0 0 0 1
1 0 S 1 0
xE - x2 — x: - x4 - XS -
0 0 1 0 1
1] 1 |1 0] 1]
1] 17 B 17 17
1 0 1 1 0
- 2 = 3 = 4 = 5 =
Y=o 7 o Y h Y=o S
1] 1| |1 0] 1]
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Obtain the corresponding matrices M, , M., ,..., M, , according to step 1, indicated in

section 2.1.

R

1

yI@(xl)’ _ .
_1_

T

9 1 0

y @(x‘) = 0
-—lw
8

0

ys @(xs)‘ - 1
..1_

o1 1 0 1]=

@0 0 0 1]=

@1 01 1]=

01
01
00
01
10
01
01
10

01
00
01
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01
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01
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10
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10
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10
10
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10
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01
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01
01
00
01
01
00
00
01

01
00
01
01

According to step 2 in section 2.1, an Alpha-Beta Associative Memory of type
MAX denoted by M , is obtained. Analogously, according to step 3 in section 2.1, an
Alpha-Beta Associative Memory of type min denoted by W , is obtained.

10
01
10
10

10
10
01
10

3.2 Recalling Phase

10
10
01
01

01
01
00
00

01
00
01
01

01}
00
00
01

Obtain the corresponding outpﬁt patterns, by performing the operations MA ;x“,
Yue{l,2,..,p} as stated in section 2.2. Due to paper space limitations, only the Al-
pha-Beta MAX type recalling phase results are shown.

10
01
10
10

10
10
01
10

10 1
10 A 1
01 7|0
01 1
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Fig. 1. Alpha unit.
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The reader can easily verify that the Alpha-Beta min type recalling phase also re-
calls the whole fundamental set of patterns perfectly.

4 Implementation Details

As previously mentioned, the main goal of this paper is to derive an efficient im-
plementation of the Alpha-Beta Associative Memories which exploits the inherent par-
allelism of this mathematical model, targeted towards FPGAs. The Alpha operator im-
plementation is shown in Figure 1, while the Beta operator implementation is shown in
Figure 2.

The proposed architecture works with a 50 MHz master clock, which implies a 20ns
period. As is it shown in Figure 3, the leaming phase is implemented with 5 registers, 1
MAZX/min block and 2 external 10ns SRAM chips (mounted on the same board), that
allow IMB of data storage, 8 Alpha blocks that allow byte processing instead of bit
processing, resulting in an eight times faster learning phase compared against [8].
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AND

Fig. 2. Beta unit.

There are two remarkable topics to be taken into consideration. The former concerns
about the amount of logic resources that are needed to implement the two binary opera-
tors (Alpha and Beta). The latter results from the fact that most of the components that
constitute the learning phase are combinatorial circuits. Hence, it is possible to read

data from the external SRAM memory at the same time that a new bit is shifted to the
Alpha blocks.

Fig. 3. Learning Phase Architecture.

As it is shown in Figure 4, the recalling phase is implemented with 4 registers, 8
Beta block, 1 min/MAX block and the same 2 external 10ns SRAM chips that were
used to store the fundamental associations during the learmning phase. The recalling

phase is executed as follows. Firstly, R, receives one data word from the Alpha-Beta
Associative Memory (stored in the 2 external 10ns SRAM chips). Then, R, receives the
unknown input pattern. Finally, R, stores the recalled output pattern.
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Fig. 4. Recalling Phase Architecture.

5 Experimental Results

The experimental phase was carried out in two stages. In the first one, the same fun-
damental set of patterns that was presented in section 3, was downloaded to the pro-
posed architecture. The performance results are shown in Figure 5 and Figure 6. As ex-
pected, the entire fundamental set of patterns was perfectly recalled. In order to
estimate how the Alpha-Beta Associative Memory model performs with high dimen-
sional data, 20 binary images obtained from the Third International Fingerprint Verifi-
cation Competition (FVC2004) were used as fundamental patterns (Figure 7). Origi-
nally, each one of these images is 160 by 120 pixels.
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Fig. 5. Learning Phase Performance.
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Fig. 6. Recalling Phase Performance.

The Advanced Batch Converter image editor was used to modify the fingerprints
dimensions, such that it was possible to keep the pattern associations over the previ-
ously mentioned SRAM chips. The experimental phase was carried out as follows: af-
ter the register initialization process was concluded, the first association was learned
and recalled. Subsequently, the first and second associations were learned and recalled;
after that, the same procedure continued in a consecutive manner until the fundamental
set of patterns was completely leamed and recalled. The above mentioned procedure
was executed 10 times, each time changing the fundamental patterns order randomly. A
relevant thing to mention about the recalling criterion that was used along the experi-
mental phase is that, in this case, perfect recall means that all of the 1600 bits were ex-
actly recovered. Particularly, outstanding results were achieved by both types of Alpha-
Beta Associative Memories (the whole fundamental set of patterns was perfectly re-
called).

6 Conclusions and Ongoing Research

>4

In this paper, we introduced a simple but efficient implementation of the Alpha-Beta
Associative Memories which exploits the inherent parallelism of this mathematical
model targeted towards FPGAs that overcomes a serious challenge in pattern recogni-
tion tasks (bottle-neck problems due to high dimensional data). A relevant thing to
mention is that after a fundamental pattern is downloaded to the proposed architecture,
each bit is learned in 90 ns, which fulfils one of the main purposes of this paper. More-
over, if the learning rate is known, it is possible to estimate the learning phase duration
even with high dimensional fundamental patterns. Usually, this situation takes place
when the fundamental patterns are RGB images. It is worth to mention that the pro-
posed architecture can be easily adapted to work as an Alpha-Beta bi-directional asso-
ciative memory [6-7].
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